Improved Bayesian network configurations for random variable identification of concrete chlorination models

نویسندگان

  • Thanh-Binh Tran
  • Emilio Bastidas-Arteaga
  • Franck Schoefs
چکیده

Relevant material and environmental parameters are required in modelling chloride ingress into concrete. They could be determined from experimental data (concrete cores taken during inspection) but in practice data availability is limited by time-consuming and expensive tests. Consequently, the main objective of this paper is to develop an approach based on Bayesian networks (BN) to improve the parameter identification when inspection data is limited. We aim at proposing appropriate inspection configurations that reduce inspection costs and identification errors for different exposure conditions and materials. It was found that it is possible to define an optimal number of inspection points in depth for allowed identification errors defined by decision makers. The optimal number of inspection points depends on both exposure and material properties. The random variables identified with the improved BN configurations are used to assess the probability of corrosion initiation. The results indicate that the improved BN configurations are useful to identify model parameters even from scarce inspection data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Meshless Method in Conjunction with Bayesian Theorem for Electrical Tomography of Concrete

Electric potential measurement technique (tomography) was introduced as a nondestructive method to evaluate concrete properties and durability. In this study, numerical meshless method was developed to solve a differential equation which simulates electric potential distribution for concrete with inclusion in two dimensions. Therefore, concrete samples with iron block inclusion in different loc...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

Improved MDL Score for Learning of Bayesian Networks

In this paper, we propose two modifications to the original Minimum Description Length (MDL) score for learning of Bayesian networks. The first modification is that the description of network structure is proved to be unnecessary and can be omitted in the total MDL score. The second modification consists in reducing the description length of conditional probability table (CPT). In particular, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017